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A finite element technique for solving multidimensional flow problems with moving 
boundaries is developed by means of Galerkin’s procedure. The method accounts auto- 
matically for continuous grid deformation during simulation, and utilizes finite difference 
techniques in the time domain. In the absence of grid deformation, the method reduces 
to the standard GaIerkin finite element formulation. Utility of the approach is demonstrated 
by application to one- and two-dimensional flow probIems. 

INTRODUCTION 

There are many engineering situations in which the flow of fluid in the vicinity of a 
moving boundary is of interest. Among the examples which are commonly encoun- 
tered are vertical wave motion in open channels and containers, unconfined flow of 
groundwater, and propagation of tidal waves into dry coastal areas. These problems 
all share the feature that the spatial domain occupied by the Auid deforms during the 
course of motion, while the rate of boundary deformation at any time is determined 
by the state of the fluid at the boundary. 

The finite element method has been applied successfully to many kinds of transient 
field problems, and several works on this subject are now available (Zienkiewicz, 1971; 
Oden et al., 1974; Connor and Brebbia, 1976; Gray et al., 1977; Pinder and Gray, 1977; 
Bathe et al., 1977; Brebbia et al., 1978). By far the bulk of this work pertains to 
problems with fixed domains. A common approach has been to use the Galerkin 
method to generate a set of ordinary differential equations in the time domain. 
Finite difference methods are typically used to integrate these equations in time, 
although other methods have been used to advantage (e.g., transform methods or 
finite element representations in time). 
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In this paper, the Galerkin finite element method is applied in a way which allows 
the spatial domain to deform during simulation. The development parallels the con- 
ventional Galerkin approach, such that existing programs which treat only fixed 
boundary problems can readily be adapted to the moving boundary case. Although 
the concept of numerical simulation on a deforming grid is not entirely new, the 
present development is noteworthy insofar as it incorporates several important 
features at the outset: it is applicable to both parabolic and hyperbolic problems; the 
formulation is given for the general case of three space dimensions; and the method can 
readily be used with higher-order triangular and quadrilateral finite elements. Further, 
the flexibility of the finite difference formulation in time is preserved, allowing the use 
of a wide range of time-stepping schemes (including multilevel schemes). Since the 
method accounts automatically for arbitrary node motion, it applies to fixed boundary 
problems where it is necessary or expedient to allow internal mesh deformation, as 
well as to moving boundary problems. 

Application of the method to the study of shallow water wave propagation is 
demonstrated. An existing two-dimensional model is modified to include the moving 
boundary effects arising from the flooding and dewatering of beaches and salt flats. 
The influence of the moving boundary on the circulation at and near the boundary 
is demonstrated. 

LITERATURE REVIEW 

Two basic approaches may be followed in simulating a moving boundary problem: 

a. A straightforward application of existing methods for fixed spatial grids can 
be adopted. Special precautions must be taken both to recognize the location of the 
moving boundary at any point in time, and to approximate the physics at the 
boundary. Accuracy in the vicinity of a physically important moving boundary relies 
on high numerical resolution near the boundary. With nodes fixed in space, this high 
resolution must be maintained throughout that portion of the domain which 
“contains” the boundary motion for the entire simulation. In problems involving 
large boundary motions, considerable amounts of otherwise unnecessary numerical 
detail may be required. Nevertheless, provided a suitable numerical representation is 
used for the physics at the boundary, this approach is attractive insofar as it uses 
established numerical methods for fixed-grid problems. 

b. Alternatively, moving boundary problems may be solved using a deforming 
numerical grid. Grid deformation must be such that node points at the perimeter of 
the numerical domain always coincide with the moving boundary. In the abstract, 
this approach has an intuitively greater appeal. The disadvantages are of course the 
practical and theoretical problems encountered in (i) ensuring that boundary nodes 
do in fact “track” the moving boundary, and (ii) accounting accurately for the effects 
of grid deformation. 
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Several authors have reported simulations of hyperbolic moving boundary pro- 
blems. Reid and Bodine (1968) describe the finite difference solution of the two- 
dimensional shallow water equations, using a fixed mesh. Moving boundaries are 
approximated by turning finite-difference cells on and off at the boundary, and 
accounting for the conservation of mass in the process. Leendertse (1970) describes a 
similar fixed-grid finite difference approach. Boundary motion in both cases is 
characterized by impulsive jumps followed by periods of rest. An analogous approach 
using fixed-grid finite elements is reported by Holz and Withum (1977) for two- 
dimensional shallow water circulation. Difficulties related to the mass flux across the 
moving boundary are reported, and the authors suggest that inaccuracies near the 
boundary may be large. Xanthopoulos and Koutitas (1976) report a fixed-grid finite 
difference solution for two-dimensional overland flow, under kinematic conditions. 

Boris et al. (I 975) simulated free surface hydrodynamics in two dimensions using 
finite differences. A generalized triangular mesh was employed, and continuous node 
motion was allowed such that boundary nodes followed the motion of the free surface. 
Jamet and Bonnerot (1975) solved the compressible flow equations in one dimension 
using finite elements in both space and time. In effect this approach uses a continuously 
deforming spatial grid; the finite element treatment of the time domain accounts 
automatically for the effects of grid deformation. 

Numerical solutions for parabolic moving boundary problems have been reported 
more extensively in the literature. A large portion of this work concerns Stefan-type 
problems, and several useful review articles are available (Crank, 1975; Fox, 1975; 
Meyer, 1978). Many investigators have used a finite difference approach, and these 
results have been summarized by Crank (1975). Generally speaking, both fixed and 
deforming finite difference grids have been used. Applications are largely confined to 
one-dimensional situations and frequently lack generality. Among the moving grid 
approaches, a common (although perhaps not insurmountable) problem would appear 
to be the distorted mesh which would result in higher-dimensional situations. The 
Isotherm Migration Method (Crank and Gupta, 1975) deserves special mention 
insofar as the roles of the dependent and one of the independent space variables are 
interchanged, allowing a fixed grid to be created in the temperature domain. Gene- 
ralization of this procedure to other types of moving boundary problems, however, 
remains to be demonstrated. 

Several finite element solutions of parabolic Stefan-type problems have also been 
reported. Comini et al. (1974) used a fixed mesh approach. Latent heat effects at the 
moving boundary were accounted for by a special device (the “apparent heat capa- 
city”). Del Giudice et al. (1978) and Morgan et al. (1978) have reported improvements 
of this method. Goodrich (1978) has criticized this approach and has demonstrated 
its inferiority to a moving grid finite difference formulation for certain one-dimen- 
sional problems. Guymon and Luthin (1974) report a fixed-grid finite element 
approach in which freezing occurs simultaneously over a whole element when its 
hypothetical heat deficit equals the latent heat content. All of these fixed-grid finite 
element approaches are capable of handling higher-dimensional situations. 

Bonnerot and Jamet (1974, 1977) solved the Stefan problem using finite elements in 
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both space and time. The approach is the same as that of Jamet and Bonnerot (1975). 
The spatial grid deforms continuously in time; the effects of this deformation are 
accounted for by the finite-element representation in time. One- and two-dimensional 
solutions are reported. Mori (1976a, b) also solved the Stefan problem using con- 
tinuously deforming finite elements in space and finite difference techniques in the 
time domain. The effects of mesh deformation are accounted for by making the 
finite element basis functions implicit functions of time. Again, one- and two-dimen- 
sional solutions are reported. 

Numerical solutions to parabolic moving boundary problems have also been 
reported in the area of groundwater flow. Neuman and Witherspoon (1971) report a 
two-dimensional finite-element model for free surface problems which uses continously 
deforming elements. Nakano (1978) developed a fixed-grid finite difference model for 
one-dimensional saturated/unsaturated flow. 

Conceptually, the deforming grid approach to simulation of moving boundary 
problems is preferable to the fixed-grid approach, provided the details of grid deforma- 
tion can be incorporated efficiently. Among the specific approaches outlined above, 
the space-time finite element formulation of Bonnerot and Jamet (1974, 1977) and 
Jamet and Bonnerot (1975) appears to be the most general, having been applied to 
both parabolic and hyperbolic problems. At least at present, most of the other 
formulations seem to be limited in various ways to particular types of applications. 

An alternative to the space-time finite element approach is developed below. This 
approach also uses continuously deforming finite elements in the spatial domain, but 
retains the conventional finite difference formulation in time. The development, 
although broader in scope, initially parallels that of Mori (1976a). The resulting 
methodology, like the space-time finite element approach, is applicable to a very 
general class of moving boundary problems. 

GALERKIN FORMULATION ON DEFORMING FINITE ELEMENTS 

Consider first the Galerkin finite element approach in cases where the boundaries 
are fixed. The problem to be solved, subject to the appropriate initial and boundary 
conditions, may be illustrated schematically as 

where 

Lu =A (1) 

L is a differential operator with derivatives in time and space, 

u(x, t) is the unknown function, 

f (x, t) is a known forcing function, 

X is the set of independent space variables, 
t is time. 
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An approximate solution 6(x, t) is sought in terms of known basis functions k(x): 

u ‘v 22 = f q(t) &(x). 
j=l 

Because (2) is only an approximation, its substitution into (1) will produce a nonzero 
residual r(x, t): 

Lli - f = Y(X, t). (3) 

The Galerkin procedure requires the residual to be orthogonal to each of the basis 
functions &: 

(4% 0, $i> = 0, i = l,..., N, (4) 

where (,> is the inner product notation. Equation (4) constitutes a set of ordinary 
differential equations in the time domain for the functions uj(t). Typically, these 
equations are integrated from the initial conditions by the use of finite difference 
approximations to (4) at discrete points in time tk . 

When moving boundaries are involved, this same general approach can be retained. 
Simulation begins with the specification of initial conditions on an initial finite 
element grid and marches forward in time, allowing nodes to move while main- 
taining their initial connectivity. At any time when the initial mesh becomes unaccep- 
tably distorted due to accumulated node movement, a rezoning of the domain is 
performed. This can be achieved by stopping the simulation and adding or deleting 
nodes as required, keeping the boundary location fixed. The simulation may then 
continue as an initial-value problem. Boundary motion and the associated grid defor- 
mation are thus achieved by the juxtaposition of two processes: incremental growth 
with fixed connectivity, and instantaneous rezoning with fixed boundaries. Both parts 
of this problem must be accomplished accurately and efficiently to obtain a good 
solution. Incremental growth occurs during each time step and requires an effective 
equation solution technique; this process is the major concern of this paper. The 
rezoning process implies automatic recognition of mesh distortion as well as the 
rezoning itself, both of which are nontrivial programming problems. However, these 
problems appear to be solvable by an efficient bookkeeping system similar to that used 
in automatic mesh generation and are not dealt with herein. 

Within this general framework, then, the moving boundary problem can be ap- 
proached by extending the basic Galerkin formulation to account for mesh deforma- 
tion. Three modifications are required in the general formulation (4) to account for 
node motion. First, since the value of a basis function & at any point depends upon 
the locations of the nodes, C& becomes an implicit function of time: 

where the X,(t) are the node coordinates. Also, the domain of integration implied by 
the inner product notation changes with time. The set of equations (4) thus become 
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nonstationary as well as nonlinear. (For example, the mass matrix (c#J, , &> which 
normally multiplies the vector of time derivatives duj/dt is no longer constant in time.) 

Second, equations for node motion must be added to set (4). Each nodal position 
X,(t) must be integrated from initial conditions by use of the identity 

& X,(t) = V,(t), 

where VL is the velocity of node 1. If node 1 is on the moving boundary, V1 is obtained 
from the boundary condition appropriate to the problem being solved, and will in 
general be related to the state of the fluid at the boundary. For interior nodes, either 
Vr = 0 or V1 = vI , where v1 is the fluid velocity at node 1, would seem to be a natural 
choice, but in general the motion of interior nodes may be arbitrarily specified to suit 
the application. 

The third departure from the conventional Galerkin approximation concerns the 
form of the time derivatives. When node motion is allowed, the approximate solution 
zi(x, t) takes the form 

zl(x, t) = 2 uj(t) 4j(X, t). 
j=l 

Note that this formulation identifies ui(t) as the value of zi at nodej, i.e., at the moving 
point Xj(t), throughout the simulation. While spatial derivatives of zi will take their 
usual form, additional terms are generated when (7) is differentiated with respect to 
time: 

The first set of terms in (8) is the usual approximation for the time derivative in 
finite element models. The terms involving acftj/at are nonzero only in elements which 
are deforming, and account for the rate of deformation of the spatial grid.l When 
second derivatives with respect to time appear in L, two sets of extra terms arise: 

In elements which are not deforming, Eq. (9) also reduces to the usual finite element 
approximation. 

Evaluation of the weighted residuals (4) involves integration over the entire spatial 
domain (which is changing with time), and thus the terms &#@t and a2+j/at2 must be 
defined throughout the domain. It is clear that these terms depend entirely upon the 
node locations X,(t) and their derivatives. Expressions can thus in principle be 

* Mori (1976a, b) has noted the presence of these terms in the expression for a&laf. 
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obtained by writing the basis functions in terms of X,(t) and differentiating.2 However, 
this is a tedious procedure for all but the simplest elements, and a simple general 
relation can be obtained for any isoparametric element as follows. 

Consider, for example, a special case of a two-dimensional isoparametric element 
(Fig. 1) which will be allowed to deform. To perform the necessary integrations over 
this element it is usually transformed from the global (x, y) domain to a (5,~) domain 
in which it is a square, and in which the basis functions depend on 5 and r) only 
(Ergatoudis et al., 1968). Because the (f,q) space does not deform with time, the 
value of a basis function &(t, q) at any point (tO , Q,) will be constant in time. How- 
ever, the point in the x, y domain which corresponds to (to , ?lO) will depend upon time 
and the isoparametric transformation is of the form 

6 

x 

FIG. 1. Isoparametric quadrilateral in global and local coordinates. 

Differentiation of this expression with respect to time at a particular 5, q location 
yields 

where V” will be referred to as the elemental velocity. An observer moving at the 
elemental velocity will detect no change in +i SO 

Equation (12) provides a simple determination of &$,/at at any point in (x, f) and for 
any isoparametric element, in terms of the nodal velocities and the spatial gradients of 
& . Since these gradients are used throughout any finite element program, no new 
complications are introduced. (The above analysis is readily applied to isoparametric 
triangular elements by substituting the triangular area coordinates for 5 and q.) 

2 Mori (1976a) has used this approach in evaluating a&jar for one-dimensional linear elements. 
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Use, can be made of (12) to simplify the expression obtained for the time derivative 
as given in Eq. (8). Substitution of (12) into (8) yields 

However, 

Therefore (13) becomes 

The additional term in (15) which accounts for nodal motion can be interpreted as a 
correction for the Lagrangian nature of approximation (7) in elments which are 
deforming. 

The expression for ?Yc#~/&~ obtained by differentiation of (12) is 

%=-[i=l dt j] 5 %‘r$. . V& + 2V”. (VP). V& + Ve . (VV$J . V”. (16) 

Although (16) appears to be more complicated than (12) it allows for simple computa- 
tion of a2qSi/at2, given the nodal velocities and accelerations. 

The general results (16) and (12), coupled with (8) and (9), form the foundation of 
our approach to finite element simulation on a deforming mesh. 

APPLICATION TO SHALLOW WATER PROBLEMS 

As an illustration, the approach outlined above has been applied to the simulation 
of circulation in shallow, vertically homogeneous coastal regions. The horizontal 
fluid motion in such areas can be described by the shallow water equations, which are 
obtained by vertical integration of the equations of continuity and motion (Pritchard, 
1971). Further manipulation of these equations yields the shallow water wave equa- 
tion (Lynch and Gray, 1979) 

a2H 
F+~-$$==V~(gHVLJ+Hv~V~+V~[V~(Hvv)+fX Hv-W], (17a) 

which may be solved in conjunction with the primitive horizontal momentum equation 

6V 
-= 
at 

-v.vv-fx v-gv5-Tv+;, (17b) 
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where 

H(x, t> is the total fluid depth, 

t-(x, t) is the elevation of the free surface above a reference datum, 

h(x) is the bathymetry: h = H - 5, 

v(x, t> is the vertically averaged horizontal fluid velocity, 

f is the Coriolis parameter, 

g is gravity, 

W(x, t> is the wind stress, 

TV(X, t) z (g ) v / v)/(C2H) is the bottom stress, 

C(x, t) is the Chezy coefficient, 

X is the set of two horizontal spatial coordinates, 

t is time. 

Equations (17) are hyperbolic, and two types of boundary conditions have typically 
been considered: the specification of fluid depth on fixed boundaries, or alternatively 
the specification of fluid velocity normal to fixed boundaries. There is, however, a 
third type of condition, where the depth is required to be zero on shoreline boundaries 
which follow the motion of the fluid: 

H=O on X = X0 + It V dt; v = v, (18) 
0 

where X(t) is the location of the boundary at time t, X0 is the initial boundary location, 
and V is the velocity of the boundary. While the first two types of BC’s are adequate 
for solution of a variety of practical problems, the details of fluid motion in the 
vicinity of a moving boundary are often the most important aspects of a solution, and 
may in fact be the motivation for the modeling effort. Examples include coastal 
flooding due to storm surge; periodic tidal flooding of salt flats and wetlands; coastal 
water quality effects on wetlands, beaches, etc; and general beach processes such as 
sedimentation and erosion. 

A numerical solution to (17) may be sought in the finite-element form 

H(x, t> = f H,(t) Mx, t>, 
j=l 

(194 

v(x, 1) ‘v i v&> di(X, 0, 
j=l 

(19b) 

7(x, 1) II $ Tj(t) 4j(X, t). (19c) 
j-1 
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Substitution of approximations (19) into (17) and setting the weighted residuals to 
zero yield the set of ordinary differential equations 

where R&x, t) and R,(x, t) are the right-hand sides of Eqs. (17a) and (I 7b), respec- 
tively, with approximations (19) substituted for the exact values. 

Application of the finite-difference approach in time requires that Eqs. (20) be 
satisfied approximately at discrete points in time. Use of a three-level scheme is 
required by the second derivatives in (20a) and allows an explicit formulation which is 
centered in time. Simple second-order correct approximations for the time derivatives 
may be used: 

H t+At - 2Ht + Ht-At 
At2 1 3 5 

H t+At - Nt-At 

I 2dt j’ 

“t+At - “t-At 2At 1 j’ 

Substitution of (21) into (20) and evaluation of the inner products and the terms R, 
and RM at time t, yield a time-stepping scheme for the values of Hj and vj at time 
t+ At. 

In the absence of nodal motion, this model reduces to the explicit wave equation 
model, which has been shown to produce excellent results for a range of problems 
involving fixed boundaries (Lynch and Gray, 1979). In linearized, one-dimensional 
form, the model is governed by the stability constraint3 

(22) 

When moving boundaries are introduced, the motion of each node must be defined 
to complete the model. Generally speaking, it is desirable to minimize unnecessary 
node motion, since it is computationally efficient to keep the grid as stationary as 

3 Evaluation of the friction term in RM at time t leads to a computational instability. In the results 
reported below, this friction term is evaluated at time t - At. This procedure introduces an additional 
stability constraint: 7At g I. Lynch and Gray (1979) discuss this point and also give an alternative 
method for avoiding this instability which eliminates the additional constraint. 
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possible. In particular for shallow water problems it is reasonable to keep interior 
nodes fixed. This has the advantage of allowing the bathymetry function, which is 
often a major determinant of initial node placement, to remain fixed over most of the 
domain. Furthermore, the numerical method reduces to its proven stationary equiva- 
lent in most of the elements. Once interior node positions are fixed, tangential motion 
of boundary nodes could cause unnecessary computational difficulties due to the 
shearing of boundary elements. Thus it is generally desirable to eliminate this tangen- 
tial motion, where possible. 

Consideration of Eq. (18) leads to the realization that if V = v along the boundary, 
element shearing can become quite significant. However, to ensure conservation of 
mass it is only necessary that the normal components of the boundary and fluid 
velocities be equal. Thus (18) can be restated in a less restrictive form: 

H=O on X = X0 + j-” V dt; (V - v) * n = 0, (23) 
0 

where V and v are the’boundary and fluid velocities, respectively, and n is a unit vector 
normal to the boundary. The tangential velocity of the boundary nodes may be set 
to any convenient values. 

One final detail must be taken care of: in general, the discretized finite element do- 
main will have a discontinuous normal direction at the junction of two boundary 
elements. It is therefore not possible to satisfy the normal velocity relation in (23) 
exactly at every point on the boundary. In a manner similar to that used for fixed 
boundaries, (Pinder and Gray, 1977) relation (23) can be required to hold in an 
average sense for the computed velocities: 

s 
(V-v)*ndS=O, 

S 
(24) 

where S is the moving boundary. Expression of these velocities in terms of the 
finite element basis functions yields 

(254 

(25b) 

Substitution of these expressions into (24) gives the relation 

T Is (Vi - vi) * n& dS = 0. 

The most local way to satisfy (26) is to require each term in the summation to equal 
zero, or 

(Vi - vi) . IS n& dS = 0, (27) 
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which serves as a definition of the nodal normal direction n(: 

when node i is at the junction of two moving boundary segments. This definition is 
identical to that proposed by Gray (1977) and Pinder and Gray (1977) for fixed 
boundaries, and which has been used successfully in the wave equation models by 
Lynch and Gray (1979). Evaluation of (28) is facilitated by use of the divergence 
theorem: + 

where A is the entire spatial domain (Gray, 1977). Thus, evaluation of the nodal 
normal direction at any point in time does not present any new difficulties. It must be 
remembered, however, that for moving boundary problems the nodal normals change 
as the simulation proceeds, due to mesh distortion. It is 
the special case of linear triangular elements, the nodal 
the line AC in Fig. 2. 

useful to point out that for 
normal is perpendicular to 

A 

FIG. 2. Portion of a triangular grid with average nodal normal indicated for node B. 

The final numerical form of the moving boundary condition (18) is thus 

Hi=0 on Xi = X, + Jt Vi dt; (Vi - vi) . ni = 0, (304 
0 

Vi ’ hi = 0, (Job) 

where the subscript i ranges over all moving boundary nodes, and 1, is the tangential 
direction at node i. (Constraint (30b) is arbitrarily employed to reduce element 
shearing.) 

All of the relations required by the model are now available, and a typical time step 
proceeds as follows. At time t, the nodal normal directions are computed based on 
the existing grid, using Eq. (28), and the boundary node velocities are determined in 
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accordance with (30). The node locations Xi,t+at can be extrapolated by a finite- 
difference approximation to (30a): 

&.t+At = xi,t--Ot + 2At vi,t (31) 

and the term dVi/dt, required for computation of a2+$t2, can likewise be approxi- 
mated: 

(32) 

With this information, all of the required terms in Eqs. (20) can be evaluated. Thus 
the values of the dependent variables Hi and vi may be obtained at time t + dt. The 
new nodal normals can then be computed based on the deformed grid, and the entire 
procedure repeated. 

NUMERICAL RESULTS 

Two moving boundary problems have been solved using the method described 
above. The matrices on the left side of Eqs. (20) were reformulated during every time 
step. All inner products were evaluated exactly, using formulas given by Zienkiewicz 
(1971) and Pinder and Gray (1977). The complete nonlinear equations were used in 
both problems, although the Coriolis effect was neglected in the first problem. The 
discretization in space and time for both problems is based on that used by Lynch and 
Gray (1979), which has produced a high degree of accuracy for similar fixed boundary 
problems with the same numerical model. 

One numerical difficulty not mentioned in the model development is the charac- 
terization of bottom friction at the moving boundary. The most common formulation 
in shallow water problems, and the one used in this study, is the Manning-Chezy 
formula for the friction slope S,: 

& = C2H = 2 g ’ v ’ v - ‘(X t)v f 
The term 7, although finite throughout the interior of the domain, approaches 
infinity at the moving boundary, where H = 0. This suggests that the Manning- 
Chezy formulation breaks down near the moving boundary, and it is believed that 
basic hydraulic research is required in this area. For the present, however, there 
appears to be no alternative to this formulation. In the numerical scheme used herein, 
the function T(X, t) is expanded in terms of its nodal values TV and the finite-element 
basis functions (Eq. (19~)). The value assigned to 7i at a boundary node must be 
representative of the frictional effect throughout the boundary element. A convention 
is required whereby the determination of TV at boundary nodes is based on some small, 
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positive depth. Preliminary numerical experiments have shown that good results are 
obtained when this friction depth is approximated with an average depth in the 
boundary elements, and this approach has been adopted in the example problems. 

The first example involves a canal with linear bathymetry (Fig. 3a) subject to 
periodic forcing at the seaward end: 

5(x = 0, t > 0) = sin(wt). 

This problem was solved using two-dimensional linear triangles as in Fig. 3b, with 
Ax = dy = 5 x lo* ft, H, = 30. ft, At = 0.062 hr, and ~T&J = 12.4 hr. The Chezy 
coefficient in the friction term 7, Eq. (33), was computed according to Manning’s 
formula 

Ci = 1.49H,!“/n. (34) 

4 

b) 3 

2 

16 2 26 31 36 41 46 

FIG. 3. (a) Linear bathymetry of a canal. (b) Triangular finite element grid for canal. 

The value of n used was 0.035. The Coriolis effect was not included, and the friction 
depth at the moving boundary was chosen to be 1.0 ft. The moving boundary condi- 
tion was applied at the landward boundary, and the solution compared to that 
obtained by applying a no-flux condition at x = 8dx. The effect of this approximate 
no-flux boundary condition is expected to be greatest at the boundary, and it is 
reasonable to expect the two solutions to be equivalent at points well removed from 
the boundary. The dynamic steady-state responses at and near the boundary, ob- 
tained during the fifth tidal cycle after cold start, are shown in Figs. 4a and b. 

Figure 4a shows the boundary surface elevation responses for the no-flux condition 
(node 45) and for the moving boundary (nodes 45 and 50). The two responses at node 
45 are similar, being almost equal in phase, but differing by about a factor of 2 in 
amplitude. If only the no-flux boundary solution were available, a possible way to 
estimate the actual position of the shoreline would be to extrapolate the surface 
elevation at node 45 horizontally inland. Figure 4a reveals that this procedure yields 
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severe errors in both the amplitude and phase of the boundary motion. The heavy 
frictional losses and delay experienced by the boundary fluid while moving inland are 
not properly accounted for in the no-flux solution. 

Figure 4b shows the surface elevation responses further in from the boundary at 
nodes 40 and 35. The agreement in phase continues to be good, and the discrepancy 
in amplitude decreases with distance from the boundary. The responses at node 20, 
well removed from the boundary, are practically indistinguishable, as expected. 

The second moving boundary problem which has been considered involves a 
rectangular bay, illustrated in Fig. 5a. The bathymetry depends on y alone, and varies 
linearly as shown in Fig. 5b. This problem was solved using linear triangular elements, 
and the grid shown in Fig. 3b was employed. At t = 0, the harbor was taken to be at 
rest. At the harbor entrance (nodes 1,6, 11) a storm surge was imposed: 

10, = 0, t > 0) = 1.0 - exp(--ut), 0 < x < 2LlX. 

The boundary at y = 4dy (nodes 5, 10, 15 ,..., 50) was treated as a moving boundary, 
while the rest of the boundary was subject to the no-flux condition. Parameters used 
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FIG. 5. (a) Harbor with moving boundary. (b) Harbor bathymetry, section A-A’. 

FTx104 
1 . 

. . 
. 

1.5- . 

NODE 5. * 
. . 

. . . 
1 o- . . 

. . 
. 

. 
. . *NODE 30 

. 
0.5- . . 

l :  

.  .  

.  :  

OoTei::*, ,  ,  ,  I  
I  

0 200 400 600 sbo lOOOAt 

a 

FTx104 

1 o- 9OOAt 

- 700At 

0.5- 
- -5OOAt 

0.07 
: +3OOAt 

5 ’ 15 25 35 45 (NODE #i) 

b 

FIG. 6. (a) Node positions vs. time on moving boundary. (b) Moving boundary displacement at 
selected times. 



FLOW IN DEFORMING REGIONS 151 

were Ax = Ay = 5. x IO4 ft, At = 0.062 hr, r = 0.333 hr-I, n = 0.035, and Ho = 
8.0 ft. At the moving boundary, the friction was computed based on a depth of 1.0 ft. 
As in the previous example all the nonlinear terms were retained. Coriolis acceleration 
was also included in this problem, equivalent to a latitude of 41’ north. 

Results obtained are shown in Figs. 6 and 7. In Fig. 6a the position of the moving 
boundary is plotted versus time for nodes 5 and 30. In Fig. 6b, the shape of the moving 
boundary is plotted at different points in time. Both of these figures show the expected 
behavior: the response is fastest at boundary points closest to the harbor entrance, 
and resembles a delayed exponential rise. 

In Fig. 7, the velocity field obtained is plotted at time = 700 At and 900 At. The 
computed velocities behave as expected and in general are quite reasonable. 
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FIG. 7. (a) Velocity field at time of 43.4 hr (700 At). (b) Velocity field at time of 55.8 hr (900 At). 
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CONCLUSION 

The Gale&in method can be readily applied to finite element simulation problems 
in which the spatial grid deforms in time. The resulting set of ordinary differential 
equations reduces to the standard Galerkin finite-element formulation in elements 
which experience no deformation. Node motion introduces extra terms which can be 
interpreted as corrections to the time derivatives due to the Lagrangian nature of the 
finite element approximations. These correction terms are readily evaluated using 
standard finite element procedures, and thus are easily incorporated into existing 
programs which treat only fixed-grid problems. Simulation of moving boundary 
problems can be accomplished by coupling the node motion to the state of the fluid by 
means of the boundary condition. 

Application of this method has been demonstrated for coastal circulation problems 
where the shallow water equations govern. The solutions obtained are reasonable and 
well-behaved, and the introduction of the moving boundary appears to add no new 
instabilities to the basic finite element formulation of this problem. The moving 
boundary condition has a marked effect on the solution near the boundary, and the 
results have indicated that further basic research is needed in the characterization of 
boundary friction. 

In this application, the flexibility associated with the finite difference formulation 
in time is quite important. All of the finite difference expressions used, including 
those which approximate the moving boundary condition, are centered in time and 
thus second-order correct; nevertheless, the specific formulation chosen allows time 
stepping to proceed explicitly, i.e., without iteration. 
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